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Abstract- - The theory of the generalized plasticity model is reviewed. A special form for multiaxial
behavior. based on the Drucker-Prager flow potential. v proposed. The model is applied to a
simplified representation of the behavior of shape-memory allovs. with numerical examples.

I. INTRODUCTION

Generalized plasticity 1s an internal-variable model of rate-independent inelasticity that
includes conventional or classical plasticity as a special case (Lubliner, 1984, 1987). It was
developed in order to account for the behavior of elastic-plastic solids in which, following
initial plastic loading and elastic unloading, the reloading is not necessarily elastic up to
the state at which unloading began ; such solids include graphite, some stainless steels, some
rocks, and others. Simple versions of the model that are easy to implement numerically
have recently been proposed and tested (Lubliner. 1991 : Lubliner er al., 1993 ; Auricchio
and Taylor. 1994).

In spite of the name chosen for it, however. the model is not a mere generalization of
plasticity theory. Rather. it is based on some fundamental axioms and on results from
elementary set theory and topology. Thus. for example. there is no requirement that the
elastic domain (the set of states at which only elastic processes are possible) be connected.

This generality makes the model potentially capable of describing solid behavior that
may be vastly different from elastic-plastic behavior. Solids known as shape-memory alloys
exhibit such behavior. in the form of pseudoeluasticity (the recovery of large deformations
in a loading-unloading cycle. occurring at sufficiently high temperatures) and the shape-
memory effect (recovery of large deformations by a combination of mechanical and thermal
processes). Shape-memory alloys have been studied experimentally for the last three
decades. and a plethora of constitutive models has been proposed over the past 10 years.
Virtually all these models. however. are ad hoc descriptions of observed behavior, and are
limited to uniaxial loading.

This paper represents a first attempt to apply generalized plasticity to the behavior of
shape-memory alloys. Section 2 gives a review of the underlying theory, with the formal
mathematics relegated to an appendix. In Section 3, a simple three-dimensional form is
proposed for solids that may have an inelastic volume deformation. as shape-memory alloys
appear to. on the basis of the Drucker Prager flow potential. Section 4 contains the
application of the model to a simplified representation of the behavior of shape-memory
alloys. which nevertheless preserves its salient features. The application is confirmed by
numerical examples. A concluding section indicates directions tor future research.

+O0n leave from Dipartimento di Ingegneria Civile. Universita di Roma Tor Vergata, Via della Ricerca
Scientifica. 00133, Romu. [taly
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2 GENERALIZED PLASTICITY : THEORY

20 States and processes

A local thermomechanical state 1s represented by the couple (G, q). where G (belonging
to a space %) stands for the “controllable™ state variables and g for the internal variables.
Under strain-temperature control. G may be (E.T). where E is the Green—Saint-Venant
strain tensor (which may be replaced by the infinitesimal strain & under infinitesimal
displacement gradients) and 7T is the temperature. Under stress-temperature control, G may
be (S.T). where S 15 the second Piola Kirchhott stress tensor. under large displacement
gradients and (6.7). where ¢ 1s the conventional stress. under infinitesimal displacement
gradients. _

The set of realizable states i1s denoted 7. and we define .(/’ng {GI(G.q)e¥}. thatis.a
projection of / onto a plane q = constant. The constitutive equations consist of the
thermomechanical equations ol state (that is. the stress-strain-temperature relations, in
general dependent on the internal variables as well) and the rate equations for the internal
variables. The latter are assumed o take the form

q = f(G.q.G). (1)

Rate-independence means that egn (1) 15 invanant under a replacement of 7 by ¢(r), where
¢(*) is any monotonically increasimg. continuously differentiable function. It can easily be
shown that a necessury and sufficient condition for rate-independence is that f(G,q,*) be
homogenous of the first degree. that s tor any positive number ¢,

f(G.q. Gy = f(G.q.G). ()

If a matenal neighborhood of i rate-independent inelastic body 1s treated as a small
thermodynamic system. with a locual process defined as a mapping 1+ (G(r), q(¢)) of a time
interval--say [7,. 7], in which case the process is said to go from (G(1,), q(4)) to (G(¢,
q(7))-then every state 15 an cquilibrium state. and consequently every process is quasi-
static but not. in general. recersible

A function 7 (1) such as was mentioned above in defining rate-independence pro-
duces a process t— (G(p(1). qugin)). Since any such function 1s invertible, the relation
between this process and the original process 1 — (G(7), q(1)) is an equivalence on the set
of processes. The corresponding equivalence classes are called paths.

A process iy called c¢lustic 11 gy 15 a constant function. If the Kelvin inequality
(Lubliner. 1990 p. 62) 15 wssumed 1o hold as representing the second law of ther-
modynamics. then i an elustic process (with heat conduction neglected) the internal
entropy production vanishes: the process is not necessarily reversible, but may be called
quasi-rerersible (Fosdick and Serrin. 1975). [t is obvious that a process is elastic if and only
if all processes having the same path are elastic. and hence one can speak of elastic and
inelastic paths,

As a result of rate-independence embodied in the constraint (2) on the rate equation
(1) any process with G(+) cqual to a constant function is necessarily elastic. In a rate-
dependent (e.g. viscoplastic) body. such a process would be relaxation process and hence
inelastic, unless G is i the clastic regron. In the present context. such a process (whose path
consists of one point) may be called rrvial.

2.2, Elustic range. state and domain
Rate-independent plasticity is closely tied to the concept of elastic range, first for-
malized by Pipkin and Riviin (19635) and later expanded by Owen (1968, 1970). These
studies used the Iramework of the theory of materials with memory without reference to
internal variables. Here the concept is defined with the use of internal variables.

The clastic range of @ state (G £ /s defined as
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&(G.q) = |G*| there exists an elastic process from (G, q) to (G*,q)}.

Since a trivial process is elastic, it is obvious that G € (G, q) and, therefore, every state has
a non-empty elastic range. The set §(G, q) x {q}. which may be naturally identified with
&(G, q), is obviously the union of the ranges of all elastic processes (paths) from (G, q) and
is, therefore, path-connected and hence connected. The elastic range of every state will
furthermore be assumed to be closed in ;. A similar assumption was made by Pipkin and
Rivlin (1965). In the work of Owen (1968. 1970). however, the elastic range, differently
defined, is an open set.

A state (G, q) €. will be called elastic if G is an interior point of (G, q) and plastic
or inelastic if G is a boundary point of §(G.q). The set of all elastic states in &% will be
called the elastic domain and denoted " : the projection of #* into %, that is, the set
{G|(G,q) e ¥F} for a given q. will be denoted ¥’} and also called the elastic domain (at q).
Unlike £(G.q). ¢ need not, in general, be connected. If it is, then it is easy to show that
SLE < £(G,q) for every Ge ¥ .t The set of all inelastic states may analogously be denoted
&' =% —#", and its projections into ¥ is Ly = &, —F¢. It is, furthermore, convenient
to define

¢ =]
q

so that a state (G, q) is elastic if (but not only if) G ¢ 4",

2.3. Rate equations

Since it is the rate equations that determine which processes are elastic and inelastic,
it is the nature of these equations that ultimately decides the structure of the elastic range
and, therefore, of the elastic domain. In general it is quite difficult to deduce this structure
from the rate equations, and. rather than attempt to do this, we assume the sets in question
to be sufficiently regular in some sense, and then deduce some necessary properties of the
function f in eqn (1).

For example, if Ge.7! then f(G.q,G) = 0, since every (G* q) with G* in a small
enough neighborhood of G is attainable elastically and, therefore, ¢ = 0 in any possible
process through (G.q).

If the elastic range of a state (G, q) has a non-empty interior, then its boundary 06(G,
q) may be assumed to be a piecewise smooth surface in &,. If, in particular, (G,q) is a
plastic state and ¢&(G. q) 1s locally smooth at G (in which case the state may be called a
regular plastic state). with a normal N pointing away from 4(G,q). then f(G.q,"), if
continuous, must have the property that f(G.q,G) = 0 if and only if N-G < 0.1 (Proof:
for a sufficiently small positive number /. G +AG is in the interior or exterior of 66(G, q),
respectively. as N+G < 0 or N-G > 0. In the former case G +4G is attainable elastically,
hence ¢ = 0: in the latter case G+ AG is not attainable elastically, and in particular not by
a straight-line path, hence q # 0. The limiting case NG = 0 follows by continuity.) The
simplest form of f having this property, as well as obeying the homogeneity condition (2),
1§

f(G.q.G) = g(G.q){N-G), (3)

where (*) is the Macaulay bracket, that is (x> = 1,2(x+ | x|). More complex forms were
considered by Darve and collaborators (Darve et al.. 1978 ; Darve and Labanieh, 1982).

+ Note that a process whose range 1s entirely in the elastic domain is reversible and not merely quasi-
reversible.

T The centred dot - designates the scalar product in an arbitrary n-dimensional vector space. In spaces of
symmetric second-rank tensors. however. the conventional colon : will be used.
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2.4, Thermomechanical state equations and Coleman method

In the contemporary literature of thermomechanics. it is common to use a method
developed by Coleman and various collaborators. and in particular by Coleman and Gurtin
(1967) in the context of internal variables. for the derivation of the thermomechanical
equations of state on the basis of the Clausius-Duhem inequality. It is instructive to test
the applicability of the method to the rate-independent inelastic continuum discussed here,
with the rate equations taking in particular the form (3). In the absence of heat conduction,
the Clausius-Duhem inequality mayv be written in the form of the Clausius-Planck
inequality.

G-V =X-Y G- G+D(G.q.q) = 0. (4)

where £ =(S.—1) ( being the entropy density).  is the Helmholtz free-energy density,
and

DG.q.4)E —W(G.q)idq-q

1s the internal dissipation density tall densities are per unit reference volume). The afore-
mentioned Kelvin inequality 1s just

DiG.q.q) =2 0.
With the rate equation (3) inserted. imequality (4) becomes
(¥ GG+ DIG.q.g(G.q)N-G> = 0
but this is satisfied at all (G.q. Gy if
Y=Y (G-/2D(G.q.g(G.q)N

for anyv ~e [0. 1], since tor any such ~ and any x. {x>—/x < 0. Thus. as was noted by
Lubliner (1972). the Coleman method does not lead to a unique dependence of X on the
state without a further assumption. namely. that at a plastic state an elastic process, in
which N+ G < 0 by hypothesis. is quasi-reversible. that is. that in such a process the
Clausius -Planck inequality holds as an equality. This assumption leads to 4 = 0 as the only
possible value and hence yields the classical thermomechanical state equation £ = 0'¥/0G,
thatis, S= WY Eandn= -7V (T

2.5, Properties of the elastic range aid domuain

If. us mentioned above. the boundary ¢£(G. q) of the elastic range of a state (G, q) is
a piecewise smooth surface, then it may. following Eisenberg and Phillips (1971), be called
a loading surface. Similarly. the boundary .7 of the elastic domain at q may be assumed
to form a precewise smooth surface. which may be called the vield surface at q.f The special
case where the loading and yield surface coincide. that is, in which ¢&(G,q) = 8% for
every G/ ata given q. corresponds 1o clussical or conventional plasticity. a fact that has
given the more general case studied here the name generalized plasticity.

Some additional properties can be proved with the help of some propositions, stated
and proved in Appendix | and based on elementary set theory and topology.

A corollary of Proposition 1 1s the following :

I, at each q. 74 (-.q) 1s continuous (in the sense defined in the Appendix) in &, then
My isopenin A,

The following 1s a corollary of Proposition 2

“1t should be noted that in later work by Phillips and his collaborators the term fouding surface took on a
different meaning



Generalized plasticity and shape-memory alfovs 995

If 6(G.,q) equals the closure of its interior. then for every Ge.(ff we have

6(G.q) = SF and C4(G.q) = ¢, This result may also be phrased as follows (Eisenberg
and Phillips. 1971) : the vield surface is the nitial loading surtace.

2.6. Classical plasticity as a special case

Consider the case where £(G, q) 1s independent of G. It then follows from Proposition
3 of Appendix 1 that &(G.q) equals Y ¢ atevery q. Moreover, since ¢(G,q) is connected,
it contains no isolated points and is. therefore. equal to the closure of its interior: thus
¢8(G,q) = &%, and this is precisely the definition of classical plasticity given above. It
further follows that 7.7 is the set of all plastic states :

e =16GIGely ! = 1 GG 8(G.q)).
and. therefore,

sh=
Another definition of classical plasticity. given by Pipkin and Rivlin (1965) is that the elastic
range is unaffected by elastic deformations. thatis, £(G*.q) = £(G.q) if G*€6(G,q). Itis
easy to show that this definition is implied by the one adopted here: If (G, q) = &, for all
G e ¥,. then in particular £(G*.q) = &, for all G* e £(G.q) = &,

3 GENERALIZED PLASTICITY OF DRUCKER PRAGER TYPE

3.1, Flow rule and inelastic potrential

The following discussion will be limited to stress-temperature control with infinitesimal
displacement gradients. Moreover. the control state will be denoted explicitly as (¢, T)
rather than G. If the thermomechanical strain-stress-temperature relation is given by

Note that this definition does not assume the existence of an inelastic strain. Under infini-
tesimal displacement gradients, however. it can usually be assumed (Lubliner. 1972) that

éo.T.q) =c(6.T)~&1(q).

in which case & is just the time derivative of the inelastic strain ¢'. while the thermoelastic
strain &* is given by the usual linear stress-strain-temperature relations.

It can furthermore be assumed. with no loss of generality, that the internal-variable
array q consists of ¢ and an additional array & =(Z. 7., ..). in which case the dependence
£(q) is given by an identity relation.

An equation in which & is given to within a multiplicative scalar is known as a flow
rule.

If there exists a scalar function F(a.7.q) such that

& =/,0FCo.

where ~ is a scalar. then Fis called an inclastic poteniial.
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3.2. Drucker—Prager potential

Let s denote the stress-deviator tensor, and let J, = %s:s, while I, = tre, so that
s = a—+/,1, where 1 is the identity tensor. The inelastic potential is of Drucker-Prager type
if it takes the form

Flo.T.q) = p(e)—¢(T), %)

where ¢ is some known function and

axi U) dze' \,,3.j: + a]l .

The special case x = 0 corresponds to equal response in tension and compression; the
inelastic potential is then of von Mises type.
The flow rule for the Drucker-Prager potential takes the form

b - ;:( V"35+a1>. ©)

2\/"’-12

The rate of inelastic work (per unit volume) is

6 & = ;.p(a), @)

Note that in the von Mises case. 4 = \(23)8‘ B
In radial loading, the stress can be expressed as 6 = vp(6), where v is a constant tensor.
Then

and, therefore.

For example, in simple shear, with the shear stress given by 7 and the conventional shear
strain by 7, p(6) = /3 t and / = 7'/,/3. In uniaxial tension and compression, if ¢ and ¢
denote, respectively, the magnitudes of stress and strain, then

plo) = (1 £ 2o,
_ [
so=

4+

where the plus and minus signs hold in tension and compression, respectively.

3.3. Simplifving assumptions

It will first be assumed that in the general case the quantity A, obtained by integrating
/. as given by eqn (7), is uniquely determined by €. It is a generalization of the “effective
inelastic strain™ commonly used in plasticity theory as a ““hardening variable”.

Suppose. next, that the loading surfaces in (e, T) space have the form
Fle. T, q) = constant, with F given by eqn (5), that is,

C6(0.T.q) = {(6*. T*)|p(¢*) — $(T*) = p(6) —H(D)}.

Since the normal N has been defined only as to direction, the quantity N+ G in eqn (3) may
be given by
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Fig. 1. Application of generahized plasticity with a Drucker- Prager potential to a martensitic Ni-
Ti-10% Cu alloy.

N-G = +{(cp ['a):c'r*d)'(T)T] = +F

where the sign depends on whether the elastic range is on one side or the other of the
loading surface. For the sake of definiteness. let the positive sign be taken. Then

.o . .
.= L)w)a:(‘s (q-glo. T.q)](F). (8)

Finally. an assumption will be made concerning the quantity between brackets on the
right-hand side of eqn (8): namely. that this function of (¢.7.q) depends on (¢,7) only
through F and on q only through /. that is.

J = F.2)F )]

Equation (9) is an ordinary differential equation in the variables 4 and F. For example, a
p—+ curve for isothermal initial loading can be obtained by setting T = T, (constant) and
the initial condition ~ = 0 when p = 0.

The hypothesis of a unique p 4 curve implies that if > is known, then a stress—strain
curve in, say, tension may be used to generate the corresponding curves for shear (as given,
for example, by the torsion of a thin-walled circular tube) and compression. Figure 1 shows
the results of such an extrapolation. with an assumed value of x = 0.16, compared with the
experimental results obtained by Melton (1990) for a martensitic Ni-Ti—10% Cu alloy. As
can be seen, the comparison is quite good for compression and fair for shear.

4. A SIMPLE MODEIL FOR SHAPE-MEMORY ALLOYS

4.1. Phase trunsformations

Shape-memory alloys belong to 4 class of sohds that can undergo reversible, diffusion-
less transformations between a highly ordered phase called austenitic (or the parent phase)
and a less ordered phase called mariensitic. Typically. the former is stable at higher tem-
peratures and the latter at lower temperatures.

In a stress-free state. the austenite-to-martensite (4 — M) transformation begins at a
temperature denoted M. (for marrensite starr) and ends at the lower temperature M,
(for martensite finish); at intermediate temperatures the two phases coexist. The 4 - M
transformation is accompanied by a deformation that is considerably greater than the
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thermal contraction occurring in the same temperature range ; indeed, the coefficient of
thermal expansion is nearly the same for austenite and martensite.

The reverse transformation. from martensite to austenite (M — A4), begins at the
temperature A, (for austenite siart) and ends at the higher temperature A4; (for austenite
finish)  again. the two phases coexist at intermediate temperatures. The large deformation
that occurred with the 4 — M transtormation is removed in the M — A4 transformation.

At u constant temperature 7. the same transformations may, depending on its value,
be effected by subjecting the solid to stress. with an increase in stress being equivalent to a
decrease in temperature. Thus, if the sohd 1s initially austenitic, it may be transformed into
martensite by stressing, and the resulting deformation is considerably greater than the
accompanying elastic strain : the resulting stress strain diagram resembles those found in
clastic-plastic solids. Whether an M -» 4 transformation, with the attendant removal of the
deformation. occurs upon unloading depends on the temperature: it does not occur if
T < A itoccurs partially if 4, << T < A, and completely if T > A This last phenomenon,
in which a large deformation is removed upon unloading, is known as pseudoelasticity.
Otherwise. the removal of the deformation can be effected by heating, and subsequent
cooling. following unloading. It 1s this recovery of the initial shape by a combination of
mechanical and thermal processes that constitutes the shape-memory effect.

Numerous constitutive models have been proposed to describe the behavior of these
alloys (Tanaka er al.. 1982, 1985, 1986, 1992 : Cory and MeNichols, 1985, 1987 ; Patoor et
al.. 198% : Falk and Konopka. 1990 Liang and Rogers. 1990, 1992 : Miller and Xu, 1991 ;
Tobushi ¢ al.. 1991 : Brandon and Rogers. 1992 Abeyaratne and Knowles, 1993 ; Brinson,
1993 : Ivshin and Pence. 1993, 1994 : Sun and Hwang. 1993a.b; Wilmanski, 1993 ; Raniecki
and Lexcellent. 1994). Most of these models. however. are ad hoc descriptions of uniaxial
behavior. though some of them are based on formulations that are formally three-dimen-
sional. The model presented here is fully three-dimensional and 1s based on generalized
plasticity of Drucker-Prager type.

4.2 Application of generalized plasticiry model

Experimental results (Funakubo, 1987: Chrysochoos, 1993) indicate that under a
combination of a simple stress ¢ (whatever its nature) and temperature 7, the 4 - M
transformation takes place in that hand in the o-T plane that is bounded by the straight
lines 0 = C\(T—M) and o0 = C,(T - M,). and then only if ¢ —C,,T increases. Similarly,
the M -» 4 transformation takes place in the band bounded by the lines ¢ = C,(T— A4,)
and ¢ = C (T— A4)), and only if ¢ -- (", T decreases. Moreover, the coefficients C, and C,,
are very nearly equal. If the deformation accompanying the 4 -» M transformation is
identified with the inelastic deformation and denoted ¢'. then the union of the two bands
constitutes the previously defined set 4" if % is identified with the o-7 plane. If we set
C, = C,, = (" and define

Fo= e C(T - M)
Fo=a-C(T—-M)

then

where

G y= e IFF <0 %, = (a0.T)|FF, <0).

i

while the loading surfaces are given by the lines
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ML AT, T

Fre. 2 Inelastue domains for 4 — W and M - A transformations.

F=0a—C T = constant.

The geometry of the regions is shown in Fig. 2. [t should be noted that the function
defining the loading surfaces is independent of any mternal variables, a simplification that
nonetheless produces realistic results.

In a two-phase system. it can be assumed tor the sake of simplicity that the only
relevant internal variable (in addition to the inelastic deformation) is the fraction of mass
occupied by one of the phases. For the sake of definiteness, let this variable be the mass
fraction of martensite and let it be denoted <. so that 0 < & < 1, with £=0 denoting all
austenite and { = | all martensite. Experiments indicate that the inelastic deformation is
directly proportional to Z. that is. & = «,,J. where @y, 13 a constant equal to the maximum
inelastic deformation. attained when the solid 1s all martensite.

It is important to acknowledge that this description represents a considerable over-
simplification, in that it ignores the important fact that martensite, when first formed, may
be present in multiple orientations (variants). and that it is not until the stress-induced
reorientation of the variants takes place that relatively large deformation can take place.
The extension of the model to account tor reorientation is the subject of ongoing research.

The preceding results can be extended to general multiaxial loading by assuming that
the inelastic potential and the louding surfaces are of Drucker--Prager form, and by replacing
o everywhere by p and ¢ by /. as defined in the preceding section. Let the constants ¢,, and
(", moreover, be replaced by /., and C. respectively. Then 2 = ,,,&, and the rate equation
for & can be converted into one for ~. which can then be combined with the flow rule (6).
Furthermore, ¢(7) = CT:thus F = p—C7T. F = p- C(T—M,). and so on.

4.3. Rate equation for :
The rate equation for 2 must reflect both the 4 -» W and the M — A transformation.
For the former. we may write
Soou =g —FFF
and for the latter

= N {—FF, {—F)>.

i
=
|
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since the production of austenite is equivalent to the loss of martensite. The quantities A,,
and /&, may be assumed to be functions of Fand &, and must reflect the fact the complete
transformations lead ¢ from 0 to | and from 1 to 0. respectively. Relatively simple forms
that accomplish this goal. and that permit integration in closed form, are

hy = fy- Za
LR R

and

o

hy =B,
LU REF

where ,, and [, are positive rate constants. The factors 1 — ¢ and ¢. respectively, represent
a hypothesis of first-order reactions, while the indicated dependence on F is such as to
permit closed-form solutions. For the complete 4 — M transformation beginning with
¢ = 0 on the line F» = 0 (which corresponds to F, = — C(M,— M,)), the solution is

) ' / I 1
=T l_eXp[ Ml eir—my—p C(M\.—Mr)ﬂ’

while for the complete M — 4 transtormation beginning with =1 on F; =0 (cor-
responding to F, = C(4;— A4)). 1l 1s

N o
<= eXP[' /) l(‘ o ‘_((7;4‘) CW(A(—A\)):I

Since 2, .5y, ., = 0. we may let Ce= i, oyt Sy . nor
L A Y e N G L L D
e s G P (10)
(FVFLF |FoFy|F;

Equation (10). combined with the relation ~ = 4, and substituted in eqn (6), gives
an explicit equation for the inelastic strain rate. These equations can be integrated, numeri-
cally if necessary. to give the response to an arbitrary stress—temperature input.

4.4, Numerical examples
For simple loading paths the equations can be integrated in closed form. In what
follows we consider three examples in which closed-form solution to eqn (10) can be found.
For the material parameters we use numerical values based on (though not exactly
equal to) those reported by Chrysochoos (1993) for a Cu-Zn-Al alloy. Specifically, we set

E=7GPa. ¢,=10%. (,=C,=1MPa/ C B, =B, =3MPa,
M =5SC M =40C. A =60C. 4,=90 C.

where £ is the elastic modulus. All numerical tests are begun with the specimen in the
parent phase (I = 0). The figures corresponding to the examples show stress against strain.

Example 1 (shape-menory  cftecry. The initial temperature is set to 7T =50
(M_ < T < A). The specimen is subjected first to a stress cycle, keeping the temperature
constant. and then to a thermal cycle at zero stress, consisting of heating to 7T = 100 > A;
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Stress (MPa)

........ v . Strain (%)

Fig. 3. Shape-memory effect (stress cycle at constant temperature between M, and A, followed by
heating above 4, and cooling at zero stress).

and cooling back to the initial temperature. The results are shown in Fig. 3. At the end of the
stress cycle the material is completely in the martensitic state (since 7 < Ay, the martensite is
stable at zero stress) and accordingly shows some permanent deformation. However, this
permanent deformation is recovered after the thermal cycle ; in the course of heating, the
martensite is compietely transformed into austenite. This analysis shows that the model
can predict the shape-memory effect.

Example 2 (pseudoelasticity). Keeping the temperature constant (7 = 100 > A4,), we
load the specimen so as to have a complete stress-induced transformation (from austenite
to martensite) ; upon unloading, a complete reverse transformation occurs (from martensite
to austenite), since martensite is unstable at temperatures greater than A4, and zero stress.
The results are shown in Fig. 4.

Example 3 (pseudoelasticity with partial unloading and reloading). We test the behavior
of the model under multiple stress cycles. while keeping the temperature constant, i.e.
T = 100 > Ay. In particular, we consider the case of partial unloading and reloading where
partial reloading implies an incomplete direct transformation (from austenite to martensite),
while partial unfoading implies an incomplete reverse transformation (from martensite to

Stress (MPa)

e 0 Strain {%)

Fig. 4. Pseudoelasticity (stress cycle at constant temperature above A;).
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Stress (MPa)

= Strain (%)

Fig. 3. Pseudoclasuamy with partual unloading and reloading.

austenite). The results are shown in Fig. 3. The model presents the appropriate qualitative
behavior. as experimentally described by several investigators, such as Cory and McNichols
(1987) and Miiller and Xu (1991). [n particular. the stress-strain curve describes a series
of loops. which are internal to the complete loading -unloading cycle ; the internal loops
exhibit ratcheting. which stabilizes after a few cycles.

4.5. Conclusion

In the present work we have reviewed the theory of generalized plasticity and have
shown it to be a convenient framework for modeling materials undergoing phase transitions.
In particular. we specialized the theory to model the martensitic transformation (aus-
tenite <> martensite) that occurs in shape-memory alloys, and validated its applicability to
the modeling of such materials by means of ¢xamples showing the simulation of the
pseudoelastic and shape-memory etfects.

In future work we shall discuss the construction of more sophisticated rate equations
for the martensite fraction and the extension of the model to the case of multiple trans-
formations (such as detwinning and R-phase trunsformation).
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APPENDIX

In what follows. all topological notions regarding subsets of =/, will refer to the relative topology induced
by Y

When a mapping is detined on </, with values that are sets. such as &(-. @) or ¢é(-. q). we may wish to specify
that such a mapping is continuous. and for that purpose we need a topology on a space of sets, namely, the space
of non-empty closed subsets of ,: this space is often denoted 2“«. Fortunately. such a topology exists; it is
defined by a metric introduced by Hausdorff and named for him {see. for example, Kelley (1975)]. If d denotes a
metric on -, (e.g. the natural finite-dimensional metric). then the corresponding Hausdorff metric d on 2”7+ may
be detined by

AUAB) = mux%sup(/((i. ). sup G B) ;
G !

G B

forany 4. Bz 2 where dtG. % il GG
We now prove the tollowimng '

I[’mpo.w’fmn L1 Ge /) and i the mapping (6. q) ./, — 2« 1s continuous at G. then G is an interior point
of v

Proal. Assume the contrary. thatis. Ge /(. Since Ge 7/ by hypothesis, we have G e (G, q) by definition
and. theretore. if we define B = (&1G.¢g) to simplify the notation. we have r = (G,B) > 0. But if Ge 8.4 then
any neighborhood of G (in 27,) contains a G* ¢ ¢ < that is. (G*.q) is a plastic state. so that by definition G* e
B*¥ £ (G*. q). By the tiangle incquality. d(G, B) < d(G*.B) ~ d(G.G*) ; hence d(G*.B) = r—d(G,G*). Fur-
thermore. d(B.B*) = J(G*.B):consequently  Iim  J(B. B*) = r. Thus the assumption that ¢& (-, g) is continuous
1s violated. HGGT

Corollury. It ut each q. <= qi 1s contmuous in /. then ./ 1s open in 4.

Belore stating the next proposition. we need the following purely topological result

Lemma. Let X be a topological space. 4 a non-empty open set in X, and B a closed set in X whose interior is
connected. If 4 < Band ¢4 = ‘B then 4 = B.

Proof. Clearly -1 < B. because if there were a point v 4 ~ ¢ B, then any neighborhood of x would contain
points that do not belong to 8 and. therefore. do not belong to 4. so that 4 would not be an open set. Now
Xe-(B-A)=(X-B)_.4=1X-B _(B_A: but ¢B=cB..(4 by hypothesis. so that X—(B —A) =
(V= Byo 7B 4w 4 -(V By . the union of two closed sets and hence a closed set. Therefore, B — 4 is
open. If. however. 8 - 1 is notempty. then B is the union of two disjoint non-empty open sets and is, therefore,
not connected. Consequently 1 - B
Proposition 2.1t 27} is path-connected. then for every Ge ./,'.. E(G.q) =Y.

Proof. For every G.G*e .7} there 1s, by the hypothesis of path-connectedness. a curve lying entirely (except
possibly the end points) in /) and joining G and G*. Consequently G* € £(G. q) and G € 6(G*,q), so that & (G.q)
is the same forall Ge /| ccallit &) Clearly /% < &7 Now consider Ge a9} < then (G, g) is a plastic state. hence
GeddiG.q) = 04, sothat 7.7, = (&, We deduce (with the help of the preceding lemma) that ¥ = & ).

Corollary. If 4(G.q) cquals the closure of its interior. then for every Ge ¥y we have 6(G.q) = 7& and
5(G.q) = f:/"l

The following two-sided icluston result s useful for the transition to classical plasticity.

Proposition 3. At every possible q.

G s e oSG
. —

I

Proof. The mtersection is the set |G Geé& (G*.q) for «ll G e/, : the union is the set (G|Ge& (G*.q) for any
G*e v/, cand /) = (GG & (GYogi for a particular G*. namely G* = G,



